Hive 基本操作语句汇总
一、说明
Hive建表语句DML,可查看官网说明文档:LanguageManual DDL
二、创建表
语法:
第一种建表的形式:
说明:
temporary 临时表,在当前会话内,这张表有效,当会话结束,可以理解为程序结束,则程序终止。
external 外部表, hdfs 上的表的文件,并非存储在默认的路径上的时候,
EXTERNAL 表格和正常表格删除区别,external 只删除metastore
可以称为外部表,便于和其他数据库和程序交互,比如impala 等。
如果不加 IF NOT EXISTS 的时候,如果表存在,会报错,可以加上IF NOT EXISTS 加以避免。
注意表名不区分大小写
例子:
create temporary table my.table1;
create external table my.table2;
create tabel if not exists my.table3;
-- (Note: TEMPORARY available in Hive 0.14.0 and later)
CREATE [TEMPORARY] [EXTERNAL] TABLE [IF NOT EXISTS] [db_name.]table_name
--定义列, 比如 id Int comment '索引', name string comment '名字'
[(col_name data_type [COMMENT col_comment], ... [constraint_specification])]
[COMMENT table_comment] -- comment 表示表的注释
--分区,括号内的定义类似列的定义,分区可以根据默写字段比如日期,城市,进行分区,可以加快某些条件下的查询
--部分列的集合,根据分区列的进行粗粒度的划分,一个分区,代表着一个目录
[PARTITIONED BY (col_name data_type [COMMENT col_comment], ...)]
--分桶,在分区的基础上,可以进行分桶,分桶的原理是,根据某几列进行计算hash 值,
--然后hash 值对分成的桶的个数取余操作,决定放在哪个桶里面
--在数据量足够大的情况下,分桶比分区,更高的查询效率
--分桶,还可以使抽样更加高效
[CLUSTERED BY (col_name, col_name, ...)
[SORTED BY (col_name [ASC|DESC], ...)] INTO num_buckets BUCKETS] ---- 分桶
---大致上Skewed,对数据倾斜处理有很大帮助,没用过
[SKEWED BY (col_name, col_name, ...) -- (Note: Available in Hive 0.10.0 and later)]
ON ((col_value, col_value, ...), (col_value, col_value, ...), ...)
[STORED AS DIRECTORIES]
[
[ROW FORMAT row_format]
[STORED AS file_format]
| STORED BY 'storage.handler.class.name' [WITH SERDEPROPERTIES (...)] -- (Note: Available in Hive 0.6.0 and later)
] -- 表示文件的存储格式, 其中store by 指的是自定义文件格式,用得不多,笔者没有用过。
[LOCATION hdfs_path]
[TBLPROPERTIES (property_name=property_value, ...)] -- 表示表格的附加属性和表述。
-- (Note: Available in Hive 0.6.0 and later)
[AS select_statement];
-- 建立表格的时候同时从其他表格select 数据进行填充表格。
-- (Note: as select_statement Available in Hive 0.5.0 and later; not supported for external tables)
CREATE [TEMPORARY] [EXTERNAL] TABLE [IF NOT EXISTS] [db_name.]table_name
LIKE existing_table_or_view_name
[LOCATION hdfs_path];
说明:
数据类型
data_type
: primitive_type
| array_type
| map_type
| struct_type
| union_type -- (Note: Available in Hive 0.7.0 and later)
基本数据类型
primitive_type
: TINYINT
| SMALLINT
| INT
| BIGINT
| BOOLEAN
| FLOAT
| DOUBLE
| DOUBLE PRECISION -- (Note: Available in Hive 2.2.0 and later)
| STRING
| BINARY -- (Note: Available in Hive 0.8.0 and later)
| TIMESTAMP -- (Note: Available in Hive 0.8.0 and later)
| DECIMAL -- (Note: Available in Hive 0.11.0 and later)
| DECIMAL(precision, scale) -- (Note: Available in Hive 0.13.0 and later)
| DATE -- (Note: Available in Hive 0.12.0 and later)
| VARCHAR -- (Note: Available in Hive 0.12.0 and later)
| CHAR -- (Note: Available in Hive 0.13.0 and later)
复杂数据类型
array_type
: ARRAY < data_type >
map_type
: MAP < primitive_type, data_type >
struct_type
: STRUCT < col_name : data_type [COMMENT col_comment], ...>
union_type
: UNIONTYPE < data_type, data_type, ... > -- (Note: Available in Hive 0.7.0 and later)
## 在hdfs 上的文件存储格式
row_format
: DELIMITED [FIELDS TERMINATED BY char [ESCAPED BY char]] [COLLECTION ITEMS TERMINATED BY char]
[MAP KEYS TERMINATED BY char] [LINES TERMINATED BY char]
[NULL DEFINED AS char] -- (Note: Available in Hive 0.13 and later)
| SERDE serde_name [WITH SERDEPROPERTIES (property_name=property_value, property_name=property_value, ...)]
file_format:
: SEQUENCEFILE
| TEXTFILE -- (Default, depending on hive.default.fileformat configuration)
| RCFILE -- (Note: Available in Hive 0.6.0 and later)
| ORC -- (Note: Available in Hive 0.11.0 and later)
| PARQUET -- (Note: Available in Hive 0.13.0 and later)
| AVRO -- (Note: Available in Hive 0.14.0 and later)
| INPUTFORMAT input_format_classname OUTPUTFORMAT output_format_classname
constraint_specification:
: [, PRIMARY KEY (col_name, ...) DISABLE NOVALIDATE ]
[, CONSTRAINT constraint_name FOREIGN KEY (col_name, ...) REFERENCES table_name(col_name, ...) DISABLE NOVALIDATE
1)创建外部表
CREATE EXTERNAL TABLE ad_rule_result(
source string COMMENT '',
entity_type int COMMENT '')
PARTITIONED BY(day string,hour string)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
LOCATION 'hdfs://mycluster/user/vc/public/ad_rule_result';
2)创建内部表:
CREATE TABLE dw.zjmj_only_refund_money_risk_result_df(
buyer_id string COMMENT '买家ID',
refund_order_count int COMMENT '仅退款订单数',
order_count int COMMENT '有效订单数',
refund_order_rate float COMMENT '仅退款订单占比',
solar_name string COMMENT '处罚名',
day string COMMENT ''
) COMMENT '仅退款规则命中的买家'
LOCATION 'hdfs://user/hive/warehouse/dw.db/zjmj_only_refund_money_risk_result_df'
3)从老表中复制一个表结构出来
创建一个新表,结构与其他一样
hive> create table new_table like records;
create table if not exists temp.ad_rule_result like vc.ad_rule_result
4)将查询结果存成表
直接将select的结果存成表:create table XX as select
分为两种情况:
①、INSERT OVERWRITE TABLE ..SELECT
:新表预先存在
hive>
> INSERT OVERWRITE TABLE stations_by_year SELECT year, COUNT(DISTINCT station) GROUP BY year
> INSERT OVERWRITE TABLE records_by_year SELECT year, COUNT(1) GROUP BY year
> INSERT OVERWRITE TABLE good_records_by_year SELECT year, COUNT(1) WHERE temperature != 9999 AND (quality = 0 OR quality = 1 OR quality = 4 OR quality = 5 OR quality = 9) GROUP BY year;
②、CREATE TABLE ... AS SELECT
:新表表预先不存在
hive> CREATE TABLE target AS SELECT col1,col2 FROM source;
hive> create table temp.ad_rule_result_2 as SELECT * FROM vc.ad_rule_result
5)创建分区表
创建分区表:
hive> create table logs(ts bigint,line string) partitioned by (dt String,country String);
加载分区表数据:
hive> load data local inpath '/home/hadoop/input/hive/partitions/file1' into table logs partition (dt='2001-01-01',country='GB');
展示表中有多少分区:
hive> show partitions logs;
5)创建临时表
例如 :
create temporary table tmp as select * from test.test001 ;
注意:
创建的临时表仅仅在当前会话是可见的,数据将会被存储在用户的暂存目录中,并在会话结束时被删除。如
果创建临时表的名字与当前数据库下的一个非临时表相同,则在这个会话中使用这个表名字时将会使用的临时表,而不是非临时表,用户在这个会话内将不能使用原表,除非删除或者重命名临时表。
临时表有如下限制:
1)不支持分区字段
2)不支持创建索引
在Hive1.1.0之后临时表可以存储到memory,ssd或者default中,可以通过配置 hive.exec.temporary.table.storage来实现。
一般使用CREATE TEMPORARY TABLE ….来创建临时表。
三、创建视图
hive> CREATE VIEW valid_records AS SELECT * FROM records2 WHERE temperature !=9999;
查看视图详细信息:
hive> DESCRIBE EXTENDED valid_records;
四、查询表
展示所有表:
hive> SHOW TABLES;
lists all the tables
hive> SHOW TABLES '.*s';
lists all the table that end with 's'. The pattern matching follows Java regular
expressions. Check out this link for documentationhttp://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html
显示表的结构信息
hive> DESCRIBE invites;
shows the list of columns
内连接:
hive> SELECT sales.*, things.* FROM sales JOIN things ON (sales.id = things.id);
查看hive为某个查询使用多少个MapReduce作业
hive> Explain SELECT sales.*, things.* FROM sales JOIN things ON (sales.id = things.id);
外连接:
hive> SELECT sales.*, things.* FROM sales LEFT OUTER JOIN things ON (sales.id = things.id);
hive> SELECT sales.*, things.* FROM sales RIGHT OUTER JOIN things ON (sales.id = things.id);
hive> SELECT sales.*, things.* FROM sales FULL OUTER JOIN things ON (sales.id = things.id);
in查询:Hive不支持,但可以使用LEFT SEMI JOIN
hive> SELECT * FROM things LEFT SEMI JOIN sales ON (sales.id = things.id);
Map连接:Hive可以把较小的表放入每个Mapper的内存来执行连接操作
hive> SELECT /*+ MAPJOIN(things) */ sales.*, things.* FROM sales JOIN things ON (sales.id = things.id);
五、更新、删除表
更新表的名称:
hive> ALTER TABLE source RENAME TO target;
添加新一列
hive> ALTER TABLE invites ADD COLUMNS (new_col2 INT COMMENT 'a comment');
删除表:
hive> DROP TABLE records;
删除表中数据,但要保持表的结构定义
hive> dfs -rmr /user/hive/warehouse/records;
从本地文件加载数据:
hive> LOAD DATA LOCAL INPATH '/home/hadoop/input/ncdc/micro-tab/sample.txt' OVERWRITE INTO TABLE records;
显示所有函数:
hive> show functions;
查看函数用法:
hive> describe function substr;
查看数组、map、结构
hive> select col1[0],col2['b'],col3.c from complex;
四、实战
1、创建分区表
CREATE TABLE IF NOT EXISTS hive_test_db.stg_hive_es_test (
id BIGINT COMMENT '主键id',
road_id STRING COMMENT '路线id',
road_name STRING COMMENT '路线name',
road_dir_no BIGINT COMMENT '行驶方向 1:北京方向,2:雄安方向',
flow double COMMENT '车流量保留2位小数',
time_new STRING COMMENT '时间') COMMENT '路况类指标-平均速度-离线-按天更新'
PARTITIONED BY (
dt STRING COMMENT 'yyyy-MM-dd'
)
ROW FORMAT
SERDE 'org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe'
WITH SERDEPROPERTIES (
'field.delim' = '\u0001',
'serialization.format' = '\u0001'
)
STORED AS
INPUTFORMAT 'org.apache.hadoop.mapred.TextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat';
2、向分区表中插入数据
insert into table hive_test_db.stg_hive_es_test partition(dt='2022-03-31') values
(1,'10001','京雄test',2,65.21,'2022-03-31 00:09:08'),
(2,'10002','京雄test',2,65.21,'2022-03-31 00:09:09'),
(3,'10003','京雄test',2,65.21,'2022-03-31 10:09:09'),
(4,'10004','京雄test',2,65.21,'2022-03-31 02:09:09'),
(5,'10005','京雄test',2,65.21,'2022-03-31 10:09:09'),
(6,'10006','京雄test',2,65.21,'2022-03-31 00:09:09'),
(7,'10007','京雄test',2,65.21,'2022-03-31 23:09:09'),
(8,'10008','京雄test',2,65.21,'2022-03-31 11:09:09'),
(9,'10009','京雄test',2,65.21,'2022-03-31 12:09:09'),
(10,'10010','京雄test',2,65.21,'2022-03-31 13:09:09');
3、查询数据
select * from hive_test_db.stg_hive_es_test where dt = '2022-03-31'
4、创建一个新表,结构与其他一样
create table hive_test_db.new_stg_hive_es_test like hive_test_db.stg_hive_es_test;
报错了
5、创建一个新表,结构与其他一样
create table hive_test_db.copy_stg_hive_es_test as SELECT * FROM hive_test_db.stg_hive_es_test;
6、新表预先存在
INSERT OVERWRITE TABLE stations_by_year SELECT year, COUNT(DISTINCT station) GROUP BY year
相关文章:
hive 学习系列三(表格的创建create-table)
为者常成,行者常至
自由转载-非商用-非衍生-保持署名(创意共享3.0许可证)